Renewable Energy and Energy Efficiency Project for Hospitals in Kisumu County, Kenya
The Opportunity – Promote Renewables in the Kenyan Healthcare Sector

The Development of a Finance-ready Renewable Energy and Energy Efficiency Project in Kisumu County, Kenya – within the framework of the 100% Renewables Cities and Regions Roadmap project

Project Initiator and Funder

The 100% Renewables Cities and Regions Roadmap Project (100% RE) is implemented by ICLEI and funded by the German Federal Ministry of Economics and Climate Protection (BMWK) through the International Climate Initiative (IKI). The 100% RE Project provides support to local and regional governments to promote progress towards 100% renewable energy strategies. The 100% RE Project works with cities and regions in selected countries to build a pathway for cities in the global south to finance and implement renewable energy (RE) and energy efficiency (EE) measures by assessing local RE and EE potential as well as developing ready-to-finance (bankable) projects.

Implementing Partner

ICLEI - Local Governments for Sustainability (ICLEI) is a global network of more than 2,500 local and regional governments committed to sustainable urban development. With activities in more than 125 countries, ICLEI influence sustainability policies and drive local action for circular, equitable, resilient, nature-based and low carbon development. ICLEI’s network, together with a team of experts, works to provide access to knowledge and partnerships and to build capacity for systemic change in urban sustainability.

Kisumu County Hospitals

Kisumu County, located in western Kenya, is one of 47 counties in the Republic of Kenya. Its headquarters is Kisumu City which is the third largest city in Kenya after the capital Nairobi and the coastal city of Mombasa. It has a population of 1,155,574 (according to the 2019 National Census). The land area of Kisumu County totals 2085.9 km2. The main sources of energy within Kisumu County are grid power and small solar home systems for lighting, whereas for cooking, firewood, charcoal, paraffin and LPG are used. The grid electrification in 2019 was about 52.6%, and grid supplies meet about 77% of the county’s electricity demand.

Technical and Financial

Bazaruto Renewables (Bazaruto) develops renewable energy projects in Sub-Saharan Africa and aims to unlock the region’s renewable energy potential by (co-)developing bankable renewable energy projects across a subset of technologies and countries. In addition to project development, Bazaruto also provides renewable advisory services in Sub-Saharan Africa to a select number of clients. ICLEI Africa appointed Bazaruto to provide consulting services for the development, design, engineering and financial matchmaking of this project within the framework of 100% RE.
Activities to Date

Previous energy audits recommended implementing the following 4 measures across healthcare facilities in Kisumu: solar PV & storage, solar water heating, LED lighting, and clean cooking solutions.

7 hospitals in Kisumu County have been audited between 2016 and 2021, updates are completed including one additional hospital audit, resulting in an initial scope of 8 hospitals.

Detailed engineering, design, and modelling of the identified measures were completed in Q1 2024.

* Jaramogi Oginga Odinga Teaching & Referral Hospital

The Project & Methodology

Project scope and expected benefits

Scope

- **Solar PV & storage (non-existing)**
 USD 1.4M investment

- **Solar water heating (hot water solution is non-existing)**
 USD 430k investment
 152k kWh p.a. additional load

- **LED lighting**
 (USD 30k donated through Signify
 307k kWh p.a. savings
 USD 70k p.a. savings)

- **Clean cooking solutions**
 (USD 16k investment)

Impact

- **Renewable energy & efficiency for 22 hospitals in Kisumu county**
 with initial focus on 8 hospitals

- **GHG emissions reduction**
 by divesting thermal
 (870,894 kg CO2e p.a.)

- **Mitigate grid unreliability**
 (frequent power cuts of up to 16
 hours for 6 smaller hospitals)

- **Energy & cost savings**
 (USD 105k p.a. savings 2 big hospitals
 enable investment 6 smaller hospitals)

- **Improved healthcare operations**
 (USD 145k + inpatient & USD 500k + outpatient p.a.)
Results Energy Audit Q4-2023 (As Is Situation)

Summary key observations

| Solar | ✓ JOOTRH and Kisumu facilities rely on KPLC as its main source (99.5%) of electricity and have reliable supply
✓ 6 smaller hospitals rely on unreliable grid and donated gensets that are often too big for the facility resulting in an expensive and inefficient solution which is often not in use |
| Water Heating | ✓ None of the 8 facilities have (solar/ electric) water heating that is functional due to poor maintenance
✓ Some facilities use firewood for water heating |
| LED Lighting | ✓ 90% of portfolio LED lighting savings potential of USD 55K p.a. can be achieved at JOOTRH
✓ 2 smaller hospitals Kombewa and Nyakach already implemented 100% LED
✓ Assumption that LED will be donated by Signify (https://www.signify.com/global) |
| Clean Cooking | ✓ Cookstoves are often not energy efficient
✓ Most hospitals predominantly cook with firewood and charcoal (which is unhealthy due to toxic emissions)
✓ Majority (67%) of CO2 reductions can be achieved at Kisumu hospital |
| Power Infrastructure & Energy Management | ✓ Most facilities don’t have a proper electrical power room and electrical power distribution board to facilitate functional electricity distribution from solar PV
✓ Some facilities lack a functional electricity meter and/or voltage regulator
✓ All hospitals lack proper energy record management systems and comprehensive energy management policies |
Proposed Renewable Energy and Energy Efficiency Measures

✓ JOOTRH and Kisumu will have a grid connected solar PV system
✓ Whilst the other hospitals have a solar PV + battery storage system
✓ LED lighting will be implemented for all hospitals except Nyakach and Kombewa (already 100% LED)
✓ Rest of the measures are almost comparable across the 8 hospitals

<table>
<thead>
<tr>
<th>Item</th>
<th>JOOTRH</th>
<th>Kisumu</th>
<th>Ahero</th>
<th>Nyakach</th>
<th>Kombewa</th>
<th>Chulaimbo</th>
<th>Muhoroni</th>
<th>Rabuor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid-tied solar PV</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar PV + storage</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Water Heating System</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Power Infrastructure*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Energy Management**</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Other***</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LED Lighting</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Clean Cooking</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1 Recommendations per facility

* Necessary investments in power infrastructure for efficient implementation and performance optimization of the proposed projects, specifically solar PV systems, LED lighting retrofit, and proper monitoring and verification of energy and cost savings.
** Embedding energy management and energy policies in every hospital including trainings on energy efficiency and energy records management.
*** Various measures that were not in the initial scope of the project including improving the design of the incinerator and exploring heat recovery possibilities.

Note on operations & maintenance (O&M): potential O&M implementing partner and associated cost to be defined and not yet included in the recommendations budget.
Proposed Renewable Energy and Energy Efficiency Measures

Solar System + Water Heating Design

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Patients x 1,000</th>
<th>Observed Load in kWh x 1,000</th>
<th>Heat pump Load in kWh x 1,000</th>
<th>Battery Bank Size (Hours)</th>
<th>CAPEX (Million KES)</th>
<th>kWh p.a. x 1,000</th>
<th>kWh Daily</th>
<th>System Size AC in KW</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOOTRH</td>
<td>405</td>
<td>288</td>
<td>77</td>
<td>N/A</td>
<td>54</td>
<td>365</td>
<td>1,000</td>
<td>200</td>
</tr>
<tr>
<td>Kisumu</td>
<td>121</td>
<td>121</td>
<td>25</td>
<td>N/A</td>
<td>32</td>
<td>146</td>
<td>400</td>
<td>80</td>
</tr>
<tr>
<td>Kombewa</td>
<td>22</td>
<td>50</td>
<td>5</td>
<td>16</td>
<td>28</td>
<td>55</td>
<td>151</td>
<td>36</td>
</tr>
<tr>
<td>Ahero</td>
<td>36</td>
<td>58</td>
<td>13</td>
<td>16</td>
<td>34</td>
<td>71</td>
<td>195</td>
<td>48</td>
</tr>
<tr>
<td>Nyakach</td>
<td>17</td>
<td>36</td>
<td>10</td>
<td>16</td>
<td>27</td>
<td>46</td>
<td>126</td>
<td>36</td>
</tr>
<tr>
<td>Chulaimbo</td>
<td>19</td>
<td>25</td>
<td>12</td>
<td>18</td>
<td>20</td>
<td>37</td>
<td>101</td>
<td>24</td>
</tr>
<tr>
<td>Muhoroni</td>
<td>12</td>
<td>30</td>
<td>5</td>
<td>18</td>
<td>20</td>
<td>35</td>
<td>96</td>
<td>24</td>
</tr>
<tr>
<td>Rabuor</td>
<td>12</td>
<td>20</td>
<td>5</td>
<td>17</td>
<td>15</td>
<td>25</td>
<td>68</td>
<td>24</td>
</tr>
</tbody>
</table>

- Solar + battery for 6 smaller hospitals
- Grid-tie system for JOOTRH and Kisumu
- Significant investments on power infrastructure are needed to implement solar for all facilities
- Lifetime system 30 years
- Battery lifetime 10 years
As Is vs To Be Situation

Portfolio comparison 8 hospitals: 30% energy usage decrease p.a. vs a 20% cost decrease p.a.

<table>
<thead>
<tr>
<th>kWh p.a. x 1,000</th>
<th>As Is</th>
<th>To Be</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,951</td>
<td>2,069</td>
</tr>
<tr>
<td>Grid</td>
<td>1,826</td>
<td>958</td>
</tr>
<tr>
<td>Genset</td>
<td>272</td>
<td>323</td>
</tr>
<tr>
<td>Solar</td>
<td>716</td>
<td>780</td>
</tr>
<tr>
<td>Firewood</td>
<td>87</td>
<td>272</td>
</tr>
<tr>
<td>Charcoal</td>
<td>1,000</td>
<td>30</td>
</tr>
</tbody>
</table>

-29.9%

<table>
<thead>
<tr>
<th>USD p.a. x 1,000¹</th>
<th>As Is</th>
<th>To Be</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>454</td>
<td>364</td>
</tr>
<tr>
<td>Grid</td>
<td>394</td>
<td>203</td>
</tr>
<tr>
<td>Genset</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>Solar</td>
<td>131</td>
<td>30</td>
</tr>
<tr>
<td>LPG</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Firewood</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Charcoal</td>
<td>1,000</td>
<td>0</td>
</tr>
</tbody>
</table>

-19.8%

1. FX UDS:KES = 1:131
Business Case - Ticket size

Total ticket size for implementing all measures across 8 hospitals will be USD 1.9M CAPEX, for which 50% grant funding will be sought + USD 2.5M O&M over total lifetime to make the project viable

Scale up potential to 14 small hospitals with USD 1.9M CAPEX & USD 2.9M O&M

USD x 1,000 – budget breakdown recommendations across hospitals

- JOOTRH: 499 (13.0%)
- Kisumu: 332 (8.7%)
- Ahero: 260 (5.2%)
- Nyakach: 200 (4.4%)
- Kombewa: 193 (3.8%)
- Chulaimbo: 167 (3.8%)
- Muhoroni: 145 (2.8%)
- Rabuor: 108 (2.8%)
- Sub-Total 8 hospitals: 1,904 (100.0%)

Scale-up potential to 14 small hospitals with USD 1.9M CAPEX & USD 2.9M O&M

- Total: 3,831 (100.0%)
- Solar Electricity: 1,927 (50.3%)
- Solar Water Heating: 1,502 (39.2%)
- LED Lighting: 398 (10.4%)
- Clean Cooking: 829 (21.6%)

July 2024

No part of this material may be copied, photocopied or duplicated in any form by any means or redistributed without the prior consent of Bazaruto Renewables
Business Case
Assumptions and results portfolio 8 hospitals (1/2)

<table>
<thead>
<tr>
<th>Financial model assumptions (USD)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPEX</td>
<td></td>
</tr>
<tr>
<td>Solar system</td>
<td>1.4M</td>
</tr>
<tr>
<td>Water heating</td>
<td>0.4M</td>
</tr>
<tr>
<td>Lighting</td>
<td>0.28M</td>
</tr>
<tr>
<td>Clean cooking</td>
<td>0.16M</td>
</tr>
<tr>
<td>Total</td>
<td>1.9M</td>
</tr>
<tr>
<td>Contingency</td>
<td>25%</td>
</tr>
<tr>
<td>OPEX</td>
<td></td>
</tr>
<tr>
<td>Lifetime solar system</td>
<td>30 years</td>
</tr>
<tr>
<td>Lifetime solar battery</td>
<td>10 years</td>
</tr>
<tr>
<td>Lifetime heat pumps</td>
<td>20 years</td>
</tr>
<tr>
<td>Annual O&M</td>
<td>2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Financial model assumptions (USD)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CAPEX</td>
<td>1.9M</td>
</tr>
<tr>
<td>Grant (50%)</td>
<td>0.95M</td>
</tr>
<tr>
<td>Loan</td>
<td>0.95M</td>
</tr>
<tr>
<td>Total annual OPEX</td>
<td>1.5M</td>
</tr>
<tr>
<td>Total maintenance reserve accounts</td>
<td>1M</td>
</tr>
<tr>
<td>Loan interest rate</td>
<td>5.98%</td>
</tr>
<tr>
<td>Loan tenor</td>
<td>10 years</td>
</tr>
<tr>
<td>Payback method</td>
<td>Annuity</td>
</tr>
<tr>
<td>FX Rate (USD : KES)</td>
<td>131</td>
</tr>
<tr>
<td>Inflation p.a.</td>
<td>2%</td>
</tr>
<tr>
<td>Annual county energy cost in USD (year 1)</td>
<td>340k</td>
</tr>
<tr>
<td>Project lifetime</td>
<td>30 years</td>
</tr>
</tbody>
</table>

Note: whilst a relatively high IRR could be achieved in theory considering the full 30-year cashflow profile of the project (with significant positive amounts in the last 10 years + factoring in yearly inflation as well), the payment capacity of the loan is conservatively sized at the as-is county instalments for year 1 of the project lifetime and needs to be repaid in 10 years. This conservative approach is needed to cushion for currency and payment risks which are difficult to factor in.
Assumptions and results portfolio 8 hospitals (2/2)

<table>
<thead>
<tr>
<th>Key impact results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># of hospitals:</td>
<td>8 (scale up potential 22 to 60)</td>
</tr>
<tr>
<td># of beds:</td>
<td>1,063</td>
</tr>
<tr>
<td>Total inpatients:</td>
<td>144k</td>
</tr>
<tr>
<td>Total outpatients:</td>
<td>500k</td>
</tr>
<tr>
<td>Total patients:</td>
<td>644k</td>
</tr>
<tr>
<td>Hours of power cut prevented:</td>
<td>No hard data recorded, but various interviews with hospital staff confirmed blackouts occur frequently and up to 16 hours a day</td>
</tr>
<tr>
<td>Carbon emission savings (kg CO2e):</td>
<td>871k</td>
</tr>
</tbody>
</table>
Results Energy Audit – Q4 2023
Results Energy Audit Q4-2023 (As Is Situation)

Methodology

Technical

- ✓ Data availability short-survey

- ✓ Initial site visit: including detailed walk-throughs at each of the 8 facilities

- ✓ Power logging; for in total 2 weeks at various facilities to design the (hybrid) solar PV systems

- ✓ Energy audit (update): including addition recommendations on energy management & power infrastructure

- ✓ BoQ and designs: of the (hybrid) solar PV systems
Results Energy Audit Q4-2023 (As Is Situation)

8 hospitals have been audited and included in the business case, the hospitals can be clustered in two clusters the bigger hospitals JOOTRH & Kisumu and 6 smaller hospitals

Patients per Hospitals

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOOTRH</td>
<td>406</td>
</tr>
<tr>
<td>Kisumu</td>
<td>121</td>
</tr>
<tr>
<td>Kombewa</td>
<td>22</td>
</tr>
<tr>
<td>Ahero</td>
<td>36</td>
</tr>
<tr>
<td>Nyakach</td>
<td>17</td>
</tr>
<tr>
<td>Chulaimbo</td>
<td>19</td>
</tr>
<tr>
<td>Muhoroni</td>
<td>12</td>
</tr>
<tr>
<td>Rabuor</td>
<td>12</td>
</tr>
</tbody>
</table>

Beds

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Beds</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOOTRH</td>
<td>600</td>
</tr>
<tr>
<td>Kisumu</td>
<td>200</td>
</tr>
<tr>
<td>Kombewa</td>
<td>60</td>
</tr>
<tr>
<td>Ahero</td>
<td>42</td>
</tr>
<tr>
<td>Nyakach</td>
<td>37</td>
</tr>
<tr>
<td>Chulaimbo</td>
<td>60</td>
</tr>
<tr>
<td>Muhoroni</td>
<td>46</td>
</tr>
<tr>
<td>Rabuor</td>
<td>18</td>
</tr>
</tbody>
</table>

2 Bigger hospitals

6 Smaller hospitals
Results Energy Audit Q4-2023 (As Is Situation)

✓ JOOTRH and Kisumu account for most of the energy consumption with 85% across all hospitals
✓ Electricity accounts for most of the energy consumption with 63.6% across all hospitals

Annual kWh Consumption x 1,000 across Energy Sources and 8 Audited Hospitals

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>JOOTRH</th>
<th>Kisumu</th>
<th>6 other hospitals</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid electricity</td>
<td>1,415</td>
<td>1,156</td>
<td>1,826</td>
<td>2,951</td>
</tr>
<tr>
<td>Genset electricity</td>
<td>1,156</td>
<td>1,096</td>
<td>109</td>
<td>51</td>
</tr>
<tr>
<td>LPG</td>
<td>244</td>
<td>482</td>
<td>30</td>
<td>272</td>
</tr>
<tr>
<td>Firewood</td>
<td>14</td>
<td>6</td>
<td>87</td>
<td>51</td>
</tr>
<tr>
<td>Charcoal</td>
<td>0</td>
<td>188</td>
<td>87</td>
<td>87</td>
</tr>
</tbody>
</table>

July 2024

No part of this material may be copied, photocopied or duplicated in any form by any means or redistributed without the prior consent of Bazaruto Renewables
Results Energy Audit Q4-2023 (Projected)

✓ JOOTRH and Kisumu account for most of the energy consumption with 84% across all hospitals
✓ Electricity accounts for most of the energy consumption with 84% across all hospitals

Annual kWh Consumption x 1,000 across Energy Sources and 8 Hospitals

- JOOTRH:
 - Grid electricity: 600 (29.0%)
 - Solar: 365 (17.6%)
 - LPG: 249 (12.0%)

- Kisumu:
 - Grid electricity: 520 (25.2%)
 - Solar: 358 (17.3%)
 - LPG: 146 (7.1%)

- 6 other hospitals:
 - Grid electricity: 334 (16.2%)
 - Solar: 146 (7.1%)
 - LPG: 323 (15.6%)

- Total:
 - Grid electricity: 2,069 (100.0%)
 - Solar: 958 (46.3%)
 - LPG: 780 (37.7%)
 - Charcoal: 323 (15.6%)
Results Energy Audit Q4-2023 (As Is Situation)

✓ JOOTRH and Kisumu account for most of the annual energy cost with 50.7M (85%) across all hospitals
✓ Electricity accounts for most of the annual energy cost with 54.8M (93%) across all hospitals

Annual KES Cost x 1M across Energy Sources and 8 Audited Hospitals

- **Grid electricity**
 - JOOTRH: 36.1 (60.5%)
 - Kisumu: 14.6 (24.4%)
 - 6 other hospitals: 13.3 (22.4%)
 - Total: 51.6 (86.6%)
- **Genset electricity**
 - JOOTRH: 32.1 (53.9%)
 - Kisumu: 0.4 (0.7%)
 - 6 other hospitals: 3.2 (5.4%)
 - Total: 38.7 (66.0%)
- **LPG**
 - JOOTRH: 3.0 (5.0%)
 - Kisumu: 0.0 (0.0%)
 - 6 other hospitals: 3.4 (5.7%)
 - Total: 6.4 (10.7%)
- **Firewood**
 - JOOTRH: 1.0 (1.6%)
 - Kisumu: 0.0 (0.0%)
 - 6 other hospitals: 0.5 (0.8%)
 - Total: 1.5 (2.5%)
- **Charcoal**
 - JOOTRH: 0.0 (0.0%)
 - Kisumu: 0.0 (0.0%)
 - 6 other hospitals: 0.9 (1.5%)
 - Total: 0.9 (1.5%)
Results Energy Audit Q4-2023 (Projected)

- JOOTRH and Kisumu account for most of the annual energy cost with 36.9M (77%) across all hospitals
- Electricity accounts for most of the annual energy cost with 44.2M (92%) across all hospitals

Annual KES Cost x 1M across Energy Sources and 8 Audited Hospitals

- **JOOTRH**
 - Grid electricity: 24.0 (49.8%)
 - Solar: 17.0 (35.3%)
 - LPG: 3.0 (6.2%)
 - Charcoal: 4.0 (8.3%)
- **Kisumu**
 - Grid electricity: 12.9 (26.8%)
 - Solar: 10.1 (21.0%)
 - LPG: 2.6 (5.4%)
 - Charcoal: 0.0 (0.0%)
- **6 other hospitals**
 - Grid electricity: 10.6 (22.0%)
 - Solar: 11.3 (23.4%)
 - LPG: 0.0 (0.0%)
 - Charcoal: 3.9 (8.1%)
- **Total**
 - Grid electricity: 27.1 (56.3%)
 - Solar: 17.1 (35.6%)
 - LPG: 0.0 (0.1%)
 - Charcoal: 3.9 (8.1%)

Annual KES Cost x 1M across Energy Sources and 8 Audited Hospitals
Results Energy Audit Q4-2023 (As Is Situation)

Biggest win in CO2 emissions reduction can be found in clean cooking by phasing out firewood

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>JOOTRH</th>
<th>Kisumu</th>
<th>6 other hospitals</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid electricity</td>
<td>578 (44.1%)</td>
<td>492 (37.5%)</td>
<td>184 (14.1%)</td>
<td>1,312 (100.0%)</td>
</tr>
<tr>
<td>Genset electricity</td>
<td>54 (4.1%)</td>
<td>241 (18.4%)</td>
<td>45 (3.4%)</td>
<td>60 (4.6%)</td>
</tr>
<tr>
<td>LPG</td>
<td>4 (0.3%)</td>
<td>249 (19.0%)</td>
<td>94 (7.2%)</td>
<td>14 (1.0%)</td>
</tr>
<tr>
<td>Firewood</td>
<td>2 (0.1%)</td>
<td>2 (0.1%)</td>
<td>32 (2.4%)</td>
<td>293 (22.4%)</td>
</tr>
<tr>
<td>Charcoal</td>
<td>636 (48.5%)</td>
<td>492 (37.5%)</td>
<td>492 (37.5%)</td>
<td>1,312 (100.0%)</td>
</tr>
</tbody>
</table>

kg CO2e p.a. x 1,000 across Energy Sources and 8 Audited Hospitals
Results Energy Audit Q4-2023 (As Is Situation)

JOOTRH is ~3 times as big as Kisumu in terms of patients and electricity consumption, both hospitals are in an area with a reliable grid connection, resulting in almost zero genset consumption (1%)
Results Energy Audit Q4-2023 (As Is Situation)

The 6 smaller hospitals have similar electricity consumption patterns in line with number of patients. All 6 hospitals have severe issues with grid reliability resulting in blackouts of up to 16 hours per day.
Results Energy Audit Q4-2023 (As Is Situation)

Energy metrics comparison

A. Annual Patients per Hospital x 1000

- Total: 645
- JOOTRH: 406
- Kisumu: 121
- Kombewa: 22
- Ahero: 36
- Nyakach: 17
- Chulaimbo: 19
- Muhoroni: 12
- Rabuor: 12

B. Energy KES per Annum x 1M

- Bed: Ø 4.5
- Total: 92.4
- JOOTRH: 88.9
- Kisumu: 120.6
- Kombewa: 97.3
- Ahero: 64.0
- Nyakach: 84.3
- Chulaimbo: 51.6
- Muhoroni: 112.4
- Rabuor: 60.2

C. Energy Intensity (kWh/Patient)

- Bed: Ø 85.7
- Total: 4.6
- JOOTRH: 3.5
- Kisumu: 9.1
- Kombewa: 2.8
- Ahero: 2.4
- Nyakach: 4.1
- Chulaimbo: 7.1
- Muhoroni: 4.6
- Rabuor: 2.6

D. Energy Cost (KES/Patient)

- Bed: Ø 85.7
- Total: 92.4
- JOOTRH: 88.9
- Kisumu: 120.6
- Kombewa: 97.3
- Ahero: 64.0
- Nyakach: 84.3
- Chulaimbo: 51.6
- Muhoroni: 112.4
- Rabuor: 60.2